第一章
金融计量学介绍
金融计量学
本章要点
金融计量学的方法论与应用步骤。
金融数据的特点和来源
金融计量学软件的使用
金融计量学
第一节 金融计量学的含义及建模步骤
一、金融计量学的含义
金融计量学就是把计量经济学中的方法和技术应用到金融领域,即应用统计方法和统计技术解决金融问题。
金融计量学
二、金融计量建模的主要步骤
经济理论或金融理论
建立金融计量模型
数据收集
模型估计
模型检验
不通过 通过
重新建立模型 模型的应用
金融计量学
第一步,把需要研究的金融问题模型化;
第二步,收集样本数据;
第三步,选择合适的估计方法来估计模型;
第四步,对模型进行检验;
第五步,对模型进行相应的应用。
金融计量学
三、金融数据的主要类型、特点和来源
1.金融数据的主要类型
时间序列数据(Time series data)
是按照一定的时间间隔对某一变量在不同时间的取值进行观测得到的一组数据,例如每天的股票价格、每月的货币供应量、每季度的GDP、每年用于表示通货膨胀率的GDP平减指数等。
金融计量学
在分析时间序列数据时,应注意以下几点:
(1)在利用时间序列数据回归模型时,各变量数据的频率应该是相同的;
(2)不同时间的样本点之间的可比性问题;
(3)使用时间序列数据回归模型时,往往会导致模型随机误差项产生序列相关;
(4)使用时间序列数据回归模型时应特别注意数据序列的平稳性问题。
金融计量学
横截面数据(Cross-sectional data)
是指对变量在某一时点上收集的数据的集合,例如,某一时间点上海证券交易所所有股票的收益率,2004年世界上发展中国家的外汇储备等。
平行数据(Panel data)
是指多个个体同样变量的时间序列数据按照一定顺序排列得到的集合,例如30家蓝筹股过去3年每日的收盘价。
金融计量学
2.金融数据的特点
与一般宏观经济数据相比,金融数据在频率、准确性、周期性等方面具有自己特有的性质:
(1)金融数据可以更频繁地观察到,可用于计量分析的数据观测值个数可以成千上万,数量十分巨大;
(2)金融数据一般都能在交易时准确记录下来;
(3)金融数据一般也是不平稳的,但难以区分金融数据序列的随机游走、趋势以及其他的一些特征。
金融计量学
3.金融数据的主要来源
政府部门和国际组织的出版物及网站
专业信息数据公司,
抽样调查
金融计量学
第二节 金融计量学软件简介
一、金融计量学主要软件简介
1.金融计量分析的主要任务
从反映金融问题的大量数据中提取和归纳金融问题的客观规律性,进行解释和预测,为金融政策和金融实践提供依据。
为此,必须合理、科学地组织管理大量的数据信息,并用计量经济学或金融计量学的方法对这些数据进行一系列复杂的数值计算处理。
金融计量学
2.分类(按操作的互动性与否分为)
菜单模式,如Microfit
命令行模式,如Eviews
及介于二者之间的中间模式
金融计量学
3.主要计量经济学软件
Eviews软件
GAUSS软件
LIMDEP软件
Mathematica软件
Matlab软件
Microfit软件
Minitab软件
RATS软件
SAS软件
SHAZMA软件
S-PLUS软件
SPSS软件
STATA软件
TSP软件
金融计量学
二、本课程所用软件-和
使用简介
以版本为例。
1 .数据输入、修改及保存
金融计量学
图1-2 Microfit 主界面
金融计量学
图1-3 数据录入设定界面
金融计量学
图1-4 变量定义、修改窗口
金融计量学
图1-5 数据录入界面
金融计量学
2.命令窗口及绘图
图1-6 Microfit 命令窗口
金融计量学
图1-7 1962~1972年辞职率和失业率线性图
金融计量学
图1-8 1962~1972年辞职率和失业率散点图
金融计量学
3.一个回归分析案例
图1-9 Microfit 单方程回归分析窗口
金融计量学
图1-10 最小二乘估计结果及相关统计量
金融计量学
图1-11 四种假设检验的结果
金融计量学
(二)Eviews 使用简介
1.数据输入、修改及保存
图1-12 Eviews新工作文件数据设定窗口
金融计量学
图1-13 空白新工作文件
金融计量学
(二)使用简介
1.数据输入、修改及保存
图1-14 新工作文件数据导入窗口
金融计量学
图1-15 数据导入后工作文件
金融计量学
图1-16 察看数据窗口
金融计量学
图1-17 GDP和M1线性图
金融计量学
图1-18 方程设定窗口
金融计量学
图1-19 回归结果
金融计量学
本章小节
金融计量学是金融学的一个重要分支,金融问题的数量化研究是金融计量学的目的,包括金融模型的设计、建立、估计、检验及使用模型进行预测和政策策划的系列过程。金融理论的迅速发展、金融模型的不断推出、计算机技术的日益发展和计量软件的多样化都为现代金融的数量化研究提供了有力的工具,这些条件的结合形成了金融计量分析的基础。
金融计量学
本章简要阐述了金融计量学的方法和一般应用步骤,着重介绍了金融数据的类型和特点,简要评述了主要的计量和统计软件包,对常用的Microfit和Eviews计量软件的使用方法进行了详细讲解并举例说明。本章旨在使学生理解金融计量模型思想,了解金融数据的特点与来源,掌握常用的金融计量软件。
金融计量学
第二章
最小二乘法(OLS)
和线性回归模型
金融计量学
本章要点
最小二乘法的基本原理和计算方法
经典线性回归模型的基本假定
BLUE统计量的性质
t检验和置信区间检验的原理及步骤
多变量模型的回归系数的F检验
预测的类型及评判预测的标准
好模型具有的特征
金融计量学
第一节 最小二乘法的基本属性
一、有关回归的基本介绍
金融、经济变量之间的关系,大体上可以分为两种:
(1)函数关系:Y=f(X1,X2,….,XP),其中Y的值是由Xi(i=1,2….p)所唯一确定的。
(2)相关关系: Y=f(X1,X2,….,XP) ,这里Y的值不能由Xi(i=1,2….p)精确的唯一确定。
金融计量学
图2-1 货币供应量和GDP散点图
金融计量学
图2-1表示的是我国货币供应量M2(y)与经过季节调整的GDP(x)之间的关系(数据为1995年第一季度到2004年第二季度的季度数据)。
金融计量学
但有时候我们想知道当x变化一单位时,y平均变化多少,可以看到,由于图中所有的点都相对的集中在图中直线周围,因此我们可以以这条直线大致代表x与y之间的关系。如果我们能够确定这条直线,我们就可以用直线的斜率来表示当x变化一单位时y的变化程度,由图中的点确定线的过程就是回归。
金融计量学
对于变量间的相关关系,我们可以根据大量的统计资料,找出它们在数量变化方面的规律(即“平均”的规律),这种统计规律所揭示的关系就是回归关系(regressive relationship),所表示的数学方程就是回归方程(regression equation)或回归模型(regression model)。
金融计量学
图2-1中的直线可表示为
()
根据上式,在确定α、β的情况下,给定一个x值,我们就能够得到一个确定的y值,然而根据式()得到的y值与实际的y值存在一个误差(即图2-1中点到直线的距离)。
金融计量学
如果我们以u表示误差,则方程()变为:
即:
其中t(=1,2,3,…..,T)表示观测数。
()
()
式()即为一个简单的双变量回归模型(因其仅具有两个变量x, y)的基本形式。
金融计量学
其中yt被称作因变量
(dependent variable)、
被解释变量
(explained variable)、
结果变量
(effect variable);
xt被称作自变量
(independent variable)、解释变量
(explanatory variable)、
原因变量
(causal variable)
金融计量学
α、β为参数(parameters),或称回归系数(regression coefficients);
ut通常被称为随机误差项(stochastic error term),或随机扰动项(random disturbance term),简称误差项,
在回归模型中它是不确定的,服从随机分布(相应的,yt也是不确定的,服从随机分布)。
金融计量学
为什么将ut 包含在模型中?
(1)有些变量是观测不到的或者是无法度量的,又或者影响因变量yt的因素太多;
(2)在yt的度量过程中会发生偏误,这些偏误在模型中是表示不出来的;
(3)外界随机因素对yt的影响也很难模型化,比如:恐怖事件、自然灾害、设备故障等。
金融计量学
二、参数的最小二乘估计
(一) 方法介绍
本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);
最小二乘法的基本原则是:最优拟合直线应该使各点到直线的距离的和最小,也可表述为距离的平方和最小。
假定根据这一原理得到的α、β估计值为 、 ,则直线可表示为 。
金融计量学
直线上的yt值,记为 ,称为拟合值(fitted value),实际值与拟合值的差,记为 ,称为残差(residual) ,可以看作是随机误差项 的估计值。
根据OLS的基本原则,使直线与各散点的距离的平方和最小,实际上是使残差平方和(residual sum of squares, 简记RSS) 最小,即最小化:
RSS= = ()
金融计量学
根据最小化的一阶条件,将式分别对、求偏导,并令其为零,即可求得结果如下 :
()
()
金融计量学
(二)一些基本概念
1.总体(the population)和样本(the sample)
总体是指待研究变量的所有数据集合,可以是有限的,也可以是无限的;而样本是总体的一个子集。
2、总体回归方程(the population regression function,简记PRF),样本回归方程(the sample regression function,简记SRF)。
金融计量学
总体回归方程(PRF)表示变量之间的真实关系,有时也被称为数据生成过程(DGP),PRF中的α、β值是真实值,方程为:
+
(2. 7)
样本回归方程(SRF)是根据所选样本估算的变量之间的关系函数,方程为:
注意:SRF中没有误差项,根据这一方程得到的是总体因变量的期望值
()
金融计量学
于是方程()可以写为:
()
总体y值被分解为两部分:模型拟合值( )和残差项( )。
金融计量学
3.线性关系
对线性的第一种解释是指:y是x的线性函数,比如,y= 。
对线性的第二种解释是指:y是参数的一个线性函数,它可以不是变量x的线性函数。 比如,y= 就是一个线性回归模型, 但 则不是。
在本课程中,线性回归一词总是对指参数β为线性的一种回归(即参数只以一次方出现),对解释变量x则可以是或不是线性的。
金融计量学
有些模型看起来不是线性回归,但经过一些基本代数变换可以转换成线性回归模型。例如,
()
可以进行如下变换:
()
令 、 、 ,则方程
(2. 11)变为:
()
可以看到,模型即为一线性模型。
金融计量学
4.估计量(estimator)和估计值(estimate)
估计量是指计算系数的方程;而估计值是指估计出来的系数的数值。
金融计量学
三、最小二乘估计量的性质和分布
(一) 经典线性回归模型的基本假设
(1) ,即残差具有零均值;
(2)var <∞,即残差具有常数方差,且对于所有x值是有限的;
(3)cov ,即残差项之间在统计意义上是相互独立的;
(4)cov ,即残差项与变量x无关;
(5)ut~N ,即残差项服从正态分布
金融计量学
(二)最小二乘估计量的性质
如果满足假设(1)-(4),由最小二乘法得到的估计量 、 具有一些特性,它们是最优线性无偏估计量(Best Linear Unbiased Estimators,简记BLUE)。
金融计量学
估计量(estimator):意味着 、 是包含着真实α、β值的估计量;
线性(linear):意味着 、 与随机变量y之间是线性函数关系;
无偏(unbiased):意味着平均而言,实际得到的 、 值与其真实值是一致的;
最优(best):意味着在所有线性无偏估计量里,OLS估计量 具有最小方差。
金融计量学
(三) OLS估计量的方差、标准差和其概率分布
估计量的方差、标准差。
给定假设(1)-(4),估计量的标准差计算方程如下 :
其中, 是残差的估计标准差。
()
()
金融计量学
参数估计量的标准差具有如下的性质:
(1)样本容量T越大,参数估计值的标准差越小;
(2) 和 都取决于s2。 s2是残差的方差估计量。 s2越大,残差的分布就越分散,这样模型的不确定性也就越大。如果s2很大,这意味着估计直线不能很好地拟合散点;
金融计量学
(3)参数估计值的方差与 成反比。 其值越小,散点越集中,这样就越难准确地估计拟合直线;相反,如果 越大,散点越分散,这样就可以容易地估计出拟合直线,并且可信度也大得多。
比较图2-2就可以清楚地看到这点。
金融计量学
图2-2 直线拟合和散点集中度的关系
金融计量学
(4) 项只影响截距的标准差,不影响斜率的标准差。理由是: 衡量的是散点与y轴的距离。 越大,散点离y轴越远,就越难准确地估计出拟合直线与y轴的交点(即截距);反之,则相反。
金融计量学
2.OLS估计量的概率分布
给定假设条件(5),即 ~ ,则 也服从正态分布
系数估计量也是服从正态分布的:
()
()
金融计量学
需要注意的是:如果残差不服从正态分布,即假设(5)不成立,但只要CLRM的其他假设条件还成立,且样本容量足够大,则通常认为系数估计量还是服从正态分布的。
其标准正态分布为:
()
()
金融计量学
但是,总体回归方程中的系数的真实标准差是得不到的,只能得到样本的系数标准差( 、 )。用样本的标准差去替代总体标准差会产生不确定性,并且
、 将不再服从正态分布,而服从自由度为T-2的t分布,其中T为样本容量
即:
~ ()
~
()
金融计量学
3.正态分布和t分布的关系
图2-3 正态分布和t分布形状比较
金融计量学
从图形上来看,t分布的尾比较厚,均值处的最大值小于正态分布。
随着t分布自由度的增大,其对应临界值显著减小,当自由度趋向于无穷时,t分布就服从标准正态分布了。
所以正态分布可以看作是t分布的一个特例。
金融计量学
第二节 一元线性回归模型的统计检验
一、拟合优度(goodness of fit statistics)检验
拟合优度可用R2 表示:模型所要解释的
是y相对于其均值的波动性,即
(总平方和,the total sum of squares,
简记TSS),这一平方和可以分成两部分:
金融计量学
= + ()
是被模型所解释的部分,称为回归平方和(the explained sum of squares,简记ESS);
是不能被模型所解释的残差平方和(RSS),即 =
金融计量学
TSS、ESS、RSS的关系以下图来表示更加直观一些:
图2-4 TSS、ESS、RSS的关系
金融计量学
拟合优度 =
因为 TSS=ESS+RSS
所以 R2= ()
()
()
R2越大,说明回归线拟合程度越好;R2越小,说明回归线拟合程度越差。由上可知,通过考察R2的大小,我们就能粗略地看出回归线的优劣。
金融计量学
但是,R2作为拟合优度的一个衡量标准也存在一些问题:
(1)如果模型被重新组合,被解释变量发生了变化,那么R2也将随之改变,因此具有不同被解释变量的模型之间是无法来比较R2的大小的。
金融计量学
(2)增加了一个解释变量以后, R2只会增大而不会减小,除非增加的那个解释变量之前的系数为零,但在通常情况下该系数是不为零的,因此只要增加解释变量, R2就会不断的增大,这样我们就无法判断出这些解释变量是否应该包含在模型中。
(3)R2的值经常会很高,达到或更高,所以我们无法判断模型之间到底孰优孰劣。
金融计量学
为了解决上面第二个问题,我们通常用调整过的R2来代替未调整过的R2 。对R2进行调整主要是考虑到在引进一个解释变量时,会失去相应的自由度。调整过的R2用 来表示,公式为:
其中T为样本容量 ,K为自变量个数
()
金融计量学
二、假设检验
假设检验的基本任务是根据样本所提供的信息,对未知总体分布某些方面的假设做出合理解释
假设检验的程序是,先根据实际问题的要求提出一个论断,称为零假设(null hypothesis)或原假设,记为H0(一般并列的有一个备择假设(alternative hypothesis),记为H1 )
然后根据样本的有关信息,对H0的真伪进行判断,做出拒绝H0或不能拒绝H0的决策。
金融计量学
假设检验的基本思想是概率性质的反证法。
概率性质的反证法的根据是小概率事件原理。该原理认为“小概率事件在一次实验中几乎是不可能发生的”。在原假设H0下构造一个事件(即检验统计量),这个事件在“原假设H0是正确的”的条件下是一个小概率事件,如果该事件发生了,说明“原假设H0是正确的”是错误的,因为不应该出现的小概率事件出现了,应该拒绝原假设H0 。
金融计量学
假设检验有两种方法:
置信区间检验法(confidence interval approach)和显著性检验法(test of significance approach)。
显著性检验法中最常用的是t检验和F检验,前者是对单个变量系数的显著性检验,后者是对多个变量系数的联合显著性检验。
金融计量学
(一)t检验
下面我们具体介绍对方程()的系数进行t检验的主要步骤。
(1)用OLS方法回归方程(),得到β的估计值 及其标准差 。
(2)假定我们建立的零假设是: ,备则假设是 (这是一个双侧检验)。
金融计量学
则我们建立的统计量
服从自由度为T-2的t分布。
(3)选择一个显著性水平(通常是5%),我们就可以在t分布中确定拒绝区域和非拒绝区域,如图2-5。如果选择显著性水平为5%,则表明有5%的分布将落在拒绝区域
金融计量学
图2-5 双侧检验拒绝区域和非拒绝区域分布
金融计量学
(4)选定显著性水平后,我们就可以根据t分布表求得自由度为T-2的临界值,当检验统计值的绝对值大于临界值时,它就落在拒绝区域,因此我们拒绝的原假设,而接受备则假设。反之则相反。
可以看到,t检验的基本原理是如果参数的假设值与估计值差别很大,就会导致小概率事件的发生,从而导致我们拒绝参数的假设值。
金融计量学
(二)置信区间法
仍以方程的系数β为例,置信区间法的基本思想是建立围绕估计值 的一定的限制范围,推断总体参数β是否在一定的置信度下落在此区间范围内。
置信区间检验的主要步骤(所建立的零假设同 t检验)。
金融计量学
(1)用OLS法回归方程(),得到β的估计值 及其标准差 。
(2)选择一个显著性水平(通常为5%),这相当于选择95%的置信度。查t分布表,获得自由度为T-2的临界值 。
(3)所建立的置信区间为( , ) ()
金融计量学
(4)如果零假设值 落在置信区间外,我们就拒绝 的原假设;反之,则不能拒绝。
需要注意的是,置信区间检验都是双侧检验,尽管在理论上建立单侧检验也是可行的。
金融计量学
(三)t检验与置信区间检验的关系
在显著性检验法下,当 的绝对值小于临界值时,即:
()
时,我们不能拒绝原假设。
对式()变形,我们可以得到:
()
可以看到,式()恰好是置信区间法的置信区间式(),因此,实际上t检验法与置信区间法提供的结果是完全一样的。
金融计量学
(四)第一类错误和第二类错误
如果有一个零假设在5%的显著性水平下被拒绝了,有可能这个拒绝是不正确的,这种错误被称为第一类错误,它发生的概率为5%。
另外一种情况是,我们得到95%的一个置信区间,落在这个区间的零假设我们都不能拒绝,当我们接受一个零假设的时候也可能犯错误,因为回归系数的真实值可能是该区间内的另外一个值,这一错误被称为第二类错误。
在选择显著性水平时人们面临抉择:降低犯第一类错误的概率就会增加犯第二类错误的概率。
金融计量学
(五)P值
P值是计量经济结果对应的精确的显著性水平。
P值度量的是犯第一类错误的概率,即拒绝正确的零假设的概率。P值越大,错误地拒绝零假设的可能性就越大;p值越小,拒绝零假设时就越放心。现在许多统计软件都能计算各种统计量的p值,如Eviews、Stata等。
金融计量学
第三节 多变量线性回归模型的统计检验
一、多变量模型的简单介绍
考察下面这个方程:
t=1,2,3….T ()
对y产生影响的解释变量共有k-1(x2t,x3t…,xkt)个,系数(β1’β2’…..βk)分别衡量了解释变量对因变量y的边际影响的程度。
金融计量学
方程()的矩阵形式为
这里:y是T×1矩阵,X是T×k矩阵,β是k×1矩阵,u是T×1矩阵
()
金融计量学
在多变量回归中残差向量为:
()
残差平方和为:
()
金融计量学
可以得到多变量回归系数的估计表达式
()
同样我们可以得到多变量回归模型残差的样本方差
()
参数的协方差矩阵 ()
金融计量学
二、拟合优度检验
在多变量模型中,我们想知道解释变量一起对因变量y变动的解释程度。我们将度量这个信息的量称为多元判定系数R2。
在多变量模型中,下面这个等式也成立:
TSS=ESS+RSS ()
其中,TSS为总离差平方和;ESS为回归平方和;RSS为残差平方和。
金融计量学
与双变量模型类似,定义如下:
即,R2是回归平方和与总离差平方和的比值;与双变量模型唯一不同的是,ESS值与多个解释变量有关。
R2的值在0与1之间,越接近于1,说明估计的回归直线拟合得越好。
()
金融计量学
可以证明:
()
因此,
()
金融计量学
三、假设检验
(一)、t检验
在多元回归模型中,t统计量为:
……
()
均服从自由度为(n-k)的t分布。下面的检验过程跟双变量线性回归模型的检验过程一样。
金融计量学
(二)、F检验
F检验的第一个用途是对所有的回归系数全为0的零假设的检验。第二个用途是用来检验有关部分回归系数的联合检验,就方法而言,两种用途是完全没有差别的,下面我们将以第二个用途为例,对F检验进行介绍。
金融计量学
为了解联合检验是如何进行的,考虑如下多元回归模型:
()
这个模型称为无约束回归模型(unrestricted regression),因为关于回归系数没有任何限制。
金融计量学
假设我们想检验其中q个回归系数是否同时为零,为此改写公式(),将所有变量分为两组,第一组包含k-q个变量(包括常项),第二组包含q个变量:
()
金融计量学
如果假定所有后q个系数都为零,即建立零假设: ,则修正的模型将变为有约束回归模型(restricted regression)(零系数条件):
()
金融计量学
关于上述零假设的检验很简单。若从模型中去掉这q个变量,对有约束回归方程()进行估计的话,得到的误差平方和 肯定会比相应的无约束回归方程的误差平方和 大。如果零假设正确,去掉这q个变量对方程的解释能力影响不大。当然,零假设的检验依赖于限制条件的数目,即被设定为零的系数个数,以及无约束回归模型的自由度。
金融计量学
检验的统计量为:
()
在这里,分子是误差平方和的增加与零假设所隐含的参数限制条件的个数之比;分母是模型的误差平方和与无条件模型的自由度之比。如果零假设为真,式()中的统计量将服从分子自由度为q,分母自由度为N-K的F分布。
金融计量学
对回归系数的子集的F检验与对整个回归方程的F检验做法一样。选定显著性水平,比如1%或5%,然后将检验统计量的值与F分布的临界值进行比较。如果统计量的值大于临界值,我们拒绝零假设,认为这组变量在统计上是显著的。一般的原则是,必须对两个方程分别进行估计,以便正确地运用这种F检验。
金融计量学
F检验与R2有密切的联系。回想 ,则
, ()
两个统计量具有相同的因变量,因此 将上面的两个方程代入(),检验的统计量可以写成:
()
金融计量学
第四节 预测
一、预测的概念和类型
(一)预测的概念
金融计量学中,所谓预测就是根据金融经济变量的过去和现在的发展规律,借助计量模型对其未来的发展趋势和状况进行描述、分析,形成科学的假设和判断。
金融计量学
(二)预测原理
条件期望(conditional expectations),在t期Y的t+1期的条件期望值记作 ,它表示的是在所有已知的t期的信息的条件下,Y在t+1期的期望值。
假定在t期,我们要对因变量Y的下一期(即t+1期)值进行预测,则记作 。
金融计量学
在t期对Y的下一期的所有预测值中,Y的条件期望值是最优的(即具有最小方差),因此,我们有:
()
金融计量学
(三)预测的类型:
(1)无条件预测和有条件预测
所谓无条件预测,是指预测模型中所有的解释变量的值都是已知的,在此条件下所进行的预测。
所谓有条件预测,是指预测模型中某些解释变量的值是未知的,因此想要对被解释变量进行预测,必须首先预测解释变量的值。
金融计量学
(2)样本内(in-sample)预测和样本外(out-of-sample)预测
所谓样本内预测是指用全部观测值来估计模型,然后用估计得到的模型对其中的一部分观测值进行预测。
样本外预测是指将全部观测值分为两部分,一部分用来估计模型,然后用估计得到的模型对另一部分数据进行预测。
金融计量学
(3)事前预测和事后模拟
顾名思义,事后模拟就是我们已经获得要预测的值的实际值,进行预测是为了评价预测模型的好坏。
事前预测是我们在不知道因变量真实值的情况下对其的预测。
金融计量学
(4)一步向前(one-step-ahead)预测和多步向前(multi-step-ahead)预测
所谓一步向前预测,是指仅对下一期的变量值进行预测,例如在t期对t+1期的值进行预测,在t+1期对t+2期的值进行的预测等。
多步向前预测则不仅是对下一期的值进行预测,也对更下期值进行预测,例如在t期对t+1期、t+2期、…t+r期的值进行预测。
金融计量学
二、预测的评价标准
1、平均预测误差平方和(mean squared error,简记MSE)平均预测误差绝对值(mean absolute error,简记MAE)。
变量的MSE定义为:
MSE= ()
其中 ― 的预测值, ―实际值,T―时段数
金融计量学
变量的MAE定义如下:
MAE= ,变量的定义同前 ()
可以看到,MSE和MAE度量的是误差的绝对大小,只能通过与该变量平均值的比较来判断误差的大小,误差越大,说明模型的预测效果越不理想。
金融计量学
2、Theil不相等系数
其定义为: ()
注意,U的分子就是MSE的平方根,而分母使得U总在0与1之间。如果U=0,则对所有的t, 完全拟合;如果U=1,则模型的预测能力最差。因此,Theil不等系数度量的是误差的相对大小。
金融计量学
Theil不等系数可以分解成如下有用的形式:
其中 分别是序列 和 的平均值和标准差, 是它们的相关系数,即:
()
金融计量学
定义不相等比例如下:
()
()
()
金融计量学
偏误比例 表示系统误差,因为它度量的是模拟序列与实际序列之间的偏离程度。
方差比例 表示的是模型中的变量重复其实际变化程度的能力。
协方差比例 度量的是非系统误差,即反映的是考虑了与平均值的离差之后剩下的误差。
理想的不相等比例的分布是 。
比例 分别称为U的偏误比例,方差比例,协方差比例。它们是将模型误差按特征来源分解的有效方法( )。
金融计量学
第五节:模型选择
一、“好”模型具有的特性
1、节省性(parsimony)
一个好的模型应在相对精确反应现实的基础上尽可能的简单。
2、可识别性(identifiability)
对于给定的一组数据,估计的参数要有唯一确定值。
金融计量学
3、高拟合性(goodness of fit)
回归分析的基本思想是用模型中包含的变量来解释被解释变量的变化,因此解释能力的高低就成为衡量模型好坏的重要的标准。
4、理论一致性(theoretical consistency)
即使模型的拟合性很高,但是如果模型中某一变量系数的估计值符号与经济理论不符,那么这个模型就是失败的。
金融计量学
5、预测能力(predictive power)
著名经济学家弗里德曼()认为:“对假设(模型)的真实性唯一有效的检验就是将预测值与经验值相比较”。因此一个好的模型必须有对未来的较强的预测能力。
金融计量学
二、用于预测的模型的选择
因为R2将随着模型解释变量的增多而不断增加,按照此标准我们将不会得到最佳的预测模型。
因此必须对由于解释变量增多而造成自由度丢失施加一个惩罚项,其中的一个标准就是:
金融计量学
对自由度丢失惩罚更为严格的标准:
Akaike的信息准则(Akaike information criterion,简记为AIC)和Schwarz的信息准则(Schwarz information criterion,简记为SC)
金融计量学
其中 是方程随机误差项方差的估计值,k是解释变量的个数,T是样本容量。
可以看到,AIC和SC 的惩罚项 、 比 更为严厉,而且相对来说SC标准对自由度的惩罚比AIC更为严厉。无论是AIC标准还是SC标准,从预测的角度来看,度量值越低,模型的预测会更好。
金融计量学
本章小节
本章内容在计量经济学中是最基础也是最重要的部分。在这一章中,我们首先介绍了最小二乘法及其估计量的性质和分布。在此基础上我们对一元线性回归模型的统计检验进行了详细讨论,接着将模型扩展,讨论了多元线性回归模型。在用模型进行预测时,主要有两种情况:即有条件预测和无条件预测。最后一小节我们简单介绍了模型的选择。
金融计量学
第三章 异方差和自相关
金融计量学
本章要点
异方差的定义、产生原因及后果
异方差的检验方法
异方差的修正方法
自相关的产生原因
忽略自相关的严重后果
自相关的检验
自相关的修正
金融计量学
在前面的章节里我们已经完成了对经典正态线性回归模型的讨论。但在实际中,经典线性回归模型的基本假定经常是不能得到满足的,而若在此状况下仍应用OLS进行回归,就会产生一系列的问题,因此我们就需要采取不同的方法对基本假定不满足的情况予以处理。
在本章中,我们将着重考虑假定2和假定3得不到满足,即存在异方差和自相关情况下的处理办法。
金融计量学
第一节 异方差的介绍
一、异方差的定义及产生原因
异方差(heteroscedasticy)就是对同方差假设(assumption of homoscedasticity)的违反。经典回归中同方差是指随着样本观察点X的变化,线性模型中随机误差项 的方差并不改变,保持为常数,即
i=1,2,…,n ()
如果的数值对不同的样本观察值各不相同,则称随机误差项具有异方差,即
常数 i=1,2,…n ()
金融计量学
图3-1 异方差直观图
金融计量学
为什么会产生这种异方差性呢?
一方面是因为随机误差项包括了测量误差和模型中被省略的一些因素对因变量的影响,另一方面来自不同抽样单元的因变量观察值之间可能差别很大。因此,异方差性多出现在横截面样本之中。至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。
金融计量学
二、异方差的后果
一旦随机误差项违反同方差假设,即具有异方差性,如果仍然用OLS进行参数估计,将会产生什么样的后果呢?
结论就是,OLS估计量的线性和无偏性都不会受到影响,但不再具备最优性,即在所有线性无偏估计值中我们得出的估计值的方差并非是最小的。
所以,当回归模型中随机项具有异方差性时,OLS法已不再适用。
金融计量学
第二节 异方差的检验
由于异方差的存在会导致OLS估计量的最佳性丧失,降低精确度。所以,对所取得的样本数据(尤其是横截面数据)判断是否存在异方差,是我们在进行正确回归分析之前要考虑的事情。异方差的检验主要有图示法和解析法,下面我们将介绍几种常用的检验方法。
金融计量学
一、图示法
图示法是检验异方差的一种直观方法,通常有下列两种思路:
(一)因变量y与解释变量x的散点图:若随着x的增加,图中散点分布的区域逐渐变宽或变窄,或出现了偏离带状区域的复杂变化,则随机项可能出现了异方差。
(二)残差图。残差图即残差平方 ( 的估计值)与x的散点图,或者在有多个解释变量时可作残差 与y的散点图或残差 和可能与异方差有关的x的散点图。具体做法:先在同方差的假设下对原模型应用OLS法,求出和残差平方 ,再绘制残差图( , )。
金融计量学
二、解析法
检验异方差的解析方法的共同思想是,由于不同的观察值随机误差项具有不同的方差,因此检验异方差的主要问题是判断随机误差项的方差与解释变量之间的相关性,下列这些方法都是围绕这个思路,通过建立不同的模型和验判标准来检验异方差。
金融计量学
(一)Goldfeld-Quandt检验法
Goldfeld-Quandt检验法是由和于1965年提出的。这种检验方法以F检验为基础,适用于大样本情形(n>30),并且要求满足条件:观测值的数目至少是参数的二倍;随机项没有自相关并且服从正态分布。
统计假设:零假设 : 是同方差(i=1,2,…,n)
备择假设 : 具有异方差
金融计量学
Goldfeld-Quandt检验法涉及对两个最小二乘回归直线的计算,一个回归直线采用我们认为随机项方差较小的数据,另一个采用我们认为随机项方差较大的数据。如果各回归直线残差的方差大致相等,则不能拒绝同方差的原假设,但是如果残差的方差增加很多,就可能拒绝原假设。步骤为:
金融计量学
第一步,处理观测值。
将某个解释变量的观测值按由小到大的顺序排列,然后将居中的d项观测数据除去,其中d的大小可以选择,比如取样本容量的1/4。再将剩余的(n-d)个数据分为数目相等的二组。
金融计量学
第二步,建立回归方程求残差平方和。
拟合两个回归模型,第一个是关于较小x值的那部分数据,第二个是关于较大x值的那部分数据。每一个回归模型都有(n-d)/2个数据以及[(n-d)/2]-2的自由度。d必须足够小以保证有足够的自由度,从而能够对每一个回归模型进行适当的估计。
对每一个回归模型,计算残差平方和:记 值较小的一组子样本的残差平方和为 = , 值较大的一组子样本的残差平方和为 = 。
金融计量学
第三步,建立统计量。
用所得出的两个子样本的残差平方和构成F统计量:
若零假设为真,则上式中n为样本容量(观测值总数),d为被去掉的观测值数目,k为模型中自变量的个数。
金融计量学
第四步,得出结论。
假设随机项服从正态分布(并且不存在序列相关),则统计量 / 将服从分子自由度和分母自由度均为( )的F分布。
对于给定的显著性水平,如果统计量的值大于上述F分布的临界值,我们就拒绝原假设,认为残差具有异方差性。否则,就不能拒绝原假设。
金融计量学
(二)Spearman rank correlation 检验法
首先引入定义Spearman的等级检验系数:
其中 表示第i个单元或现象的两种不同特性所处的等级之差,而n表示带有级别的单元或现象的个数。
在这里,我们假设模型为:
金融计量学
第一步,运用OLS法对原方程进行回归,计算残差 = ,i=1,2…n。
第二步,计算Spearman等级相关系数。将 和解释变量观察值 按从小到大或从大到小的顺序分成等级。等级的大小可以人为规定,一般取大小顺序中的序号。如有两个值相等,则规定这个值的等级取相继等级的算术平均值。
然后,计算 与 的等级差 ,= 的等级- 的等级。最后根据公式计算Spearman等级相关系数。
金融计量学
第三步,对总体等级相关系数 进行显著性检验 : =0, : 0。样本 的显著性可通过t检验按下述方法加以检验:
t=
对给定的显著水平 ,查t分布表得 的值,若 > ,表明样本数据异方差性显著,否则,认为不存在异方差性。
对于多元回归模型,可分别计算 与每个解释变量的等级相关系数,再分别进行上述检验。
金融计量学
(三)Park检验法
Park检验法就是将残差图法公式化,提出 是解释变量 的某个函数,然后通过检验这个函数形式是否显著,来判定是否具有异方差性及其异方差性的函数结构。该方法的主要步骤如下:
第一步,建立被解释变量y对所有解释变量x的回归方程,然后计算残差 (i=1,2,…,n)
第二步,取异方差结构的函数形式为 = ,其中, 和 是两个未知参数, 是随机变量。写成对数形式则为: = 。
金融计量学
第三步,建立方差结构回归模型,同时用 来代替 ,即 = 。对此模型运用OLS法。对 进行t检验,如果不显著,则没有异方差性。否则表明存在异方差。
Park检验法的优点是不但能确定有无异方差性,而且还能给出异方差性的具体函数形式。但也有质疑,认为 仍可能有异方差性,因而结果的真实性要受到影响。
金融计量学
(四)Glejser检验法
这种方法类似于Park检验。首先从OLS回归取得残差 之后,用 的绝对值对被认为与 密切相关的X变量作回归。
有如下几种函数形式(其中 是误差项):
金融计量学
Glejser检验方法的优点是允许在更大的范围内寻找异方差性的结构函数。缺点是难于确定 的适当的幂次,这往往需要进行大量的计算。从实际方面考虑,该方法可用于大样本,而在小样本中,则仅可作为异方差摸索的一种定性技巧。
金融计量学
(五)Breusch-Pagan检验法
该方法的基本思想是构造残差平方序列与解释变量之间的辅助函数,得到回归平方和ESS,从而判断异方差性存在的显著性。
设模型为:
()
并且
()
在式()中 表示是某个解释变量或全部。
金融计量学
提出原假设为 ,
具体步骤如下:
第一步,用OLS方法估计式()中的未知参数,得
()
和 (n为样本容量) ()
第二步,构造辅助回归函数
()
式中 为随机误差项。
金融计量学
第三步,用OLS方法估计式()中的未知参数,计算解释的平方和ESS,可以证明当有同方差性,且n无限增大时有
第四步,对于给定显著性水平 ,查 分布表得 ,比较 与 ,如果
> ,则拒绝原假设,表明模型中存在异方差。
金融计量学
(六)White检验
White检验的提出避免了Breusch-Pagan检验一定要已知随机误差的方差产生的原因,并且要求随机误差服从正态分布。White检验与Breusch-Pagan检验很相似,但它不需要关于异方差的任何先验知识,只要求在大样本的情况下。
下面是White检验的基本步骤:
设二元线性回归模型为
()
金融计量学
异方差与解释变量的一般线性关系为
第一步,用OLS法估计式的参数 。
第二步,计算残差序列 和 。
第三步,求 对 , , , , 的线性回归估计式,即构造辅助回归函数。
第四步,计算统计量 ,其中n为样本容量, 为辅助回归函数中的决定系数。
金融计量学
第五步,在的 原假设下,服从自由度为5的 分布,给定显著性水平 ,查分布表得临界值 ,比较 与 ,如果前者大于后者,则拒绝原假设,表明式()中随机误差存在异方差。
此外,由于金融问题研究中经常需要处理时间序列数据,当存在异方差性的时候,可考虑用ARCH方法检验。检验异方差的方法多种多样,可以根据所研究问题的需要加以选择,也可以同时选择不同的方法,对检验结果进行分析比较,以求得出更准确的结论。
金融计量学
第三节 异方差的修正
异方差性虽然不损坏OLS估计量的无偏性和一致性,但却使它们不再是有效的,甚至不是渐近(即在大样本中)有效的。参数的显著性检验失效,降低了预测精度。故而直接运用普通最小二乘法进行估计不再是恰当的,需要采取相应的修正补救办法以克服异方差的不利影响。
其基本思路是变异方差为同方差,或者尽量缓解方差变异的程度。
在这里,我们将会遇到的情形分为两种:当误差项方差为已知和当为未知。
金融计量学
一、当为 已知:加权最小二乘法
(weighted least squares,WLS
在同方差的假定下,对不同的 , 偏离均值的程度相同,取相同权数的做法是合理的。但在异方差情况下,则是显而易见的错误,因为的 方差在不同的 上是不同的。比如在递增异方差中,对应于较大的x值的估计值的偏差就比较大,残差所反映的信息应打折扣;而对于较小的x值,偏差较小,应给予重视。
金融计量学
所以在这里我们的办法就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。
金融计量学
可以考虑用 作为 的权数。
于是加权最小二乘法可以表述成使加权残差平方和
达到最小。
金融计量学
二、当 为未知
已知真实的 可以用WLS得到BLUE估计量。但现实中多数情况下是未知的,所以还要考虑别的方法来消除异方差。一般来讲,可以将异方差的表现分为这样几种类别。我们以
为模型。
(一) 正比于 :
可对原方程做如下变换:
金融计量学
(二) 正比于 :
就可将原始的模型进行入下变换
(三) 正比于Y均值的平方:
将原模型进行如下变换:
金融计量学
在上述变换中,都可以看到对的形式采取的是一种猜测的态度,即我们也不能肯定采取哪种变换更有效。同时这些变换可能还有其他的一些问题:
1.当解释变量多于1个时,也许先验上不知道应选择哪一个X去进行变换;
2.当 无法直接得知而要从前面讨论的一个或多个变换中做出估计时,所有用到t检验F检验等的检验程序,都只有在大样本中有效。
3.谬误相关的问题。
金融计量学
三、模型对数变换法
仍以模型 为例,变量 和 分别用 和 代替,则对模型
进行估计,通常可以降低异方差性的影响。
原因?
金融计量学
第四节 金融实例分析
[例3-1]纽约股票交易所(NYSE)与美国证券交易委员会(SEC)关于经济佣金率放松管制的争论,其中异方差的检验与修正在证明规模效应存在与否起着重要的作用。
金融计量学
下面通过一个具体金融案例来讨论异方差的检验与修正过程 :
根据北京市1978-1998年人均储蓄与人均收入的数据资料,若假定X为人均收入(元),Y为人均储蓄(元),分析人均储蓄受人均收入的线性影响,可建立一元线性回归模型进行分析。
设模型为
金融计量学
图3-3 Eviews回归结果
1 用OLS估计法估计参数
金融计量学
图3-4 残差图
(1)图示法
金融计量学
(2)Goldfeld-Quandt检验
按前述检验方法,对1978~1985与1991~1998年时间段的数据进行OLS方法检验,求出F统计量,查表得是否存在异方差
金融计量学
(3)ARCH检验
图3-5 ARCH检验结果
金融计量学
异方差的修正 :WLS法
图3-6 WLS估计结果
金融计量学
对数变换法
图3-7 对数变换估计结果
金融计量学
第五节 自相关的概念和产生原因
为了能更好地说明自相关问题,我们以一个金融案例来开始本章余下三节的学习,并将在下面反复用到这个例子。
例:利率的变化
我们将用工业生产指数(IP),货币供应量增长率(GM2),以及通胀率(GPW)的函数来解释国债利率R的变化。
金融计量学
R=3个月期美国国债利率。为年利率的某一百分比
IP=联邦储备委员会的工业生产指数(1987=100)
M2=名义货币供给、以十亿美元为单位
PW=所有商品的生产价格指数(1982=100)
金融计量学
用于回归模型的货币与价格变量是:
回归方程是:(括号中为t统计量)
()()() ()
= DW= S= Mean=
金融计量学
一、滞后值与自相关的概念
在阐释自相关概念之前,先介绍滞后值的概念。一个变量的滞后值是这个变量在一段时间前的取值。举个例子: 滞后一期的取值,记为 。
y的一阶差分,记为 ,是用y的当期值减去前一期的值: ,以此类推,可以得到滞后二期,滞后三期值。
金融计量学
表3-1 当期值、滞后值、差分的关系
…
…
…
…
——
——
金融计量学
回到自相关问题,在回归模型:
经典线性回归模型(CLRM)的基本假设第三条是:
若此假设被破坏,即 , 随机误差项u的取值与它的前一期或前几期的取值(滞后值)有关,则称误差项存在序列相关或自相关。
自相关有正相关和负相关之分。实证表明:在经济数据中,常见的是正自相关。
金融计量学
(a)正自相关
金融计量学
(b)负自相关
金融计量学
(c)无自相关
金融计量学
二、自相关产生的原因
1.经济数据的固有的惯性(inertia)带来的相关
2.模型设定误差带来的相关
3.数据的加工带来的相关
金融计量学
第六节 自相关的度量与后果
一、自相关的度量
假定存在自相关,若 的取值仅与前一期 有关,即 =f( ),则称这种自相关为一阶自相关。对于一般经济现象而言,两个随机项在时间上相隔越远,前者对后者的影响越小。如果存在自相关的话,最强的自相关应该是一阶自相关。这里,我们只讨论一阶自相关,并且假定这是一种线性自相关,具有一阶线性自回归AR(1)的形式:
金融计量学
式中 为常数,称为自相关系数。 是一个新随机项,它满足经典回归的全部假定。
上式可以看成是一个一元回归模型。 是因变量, 是自变量, 是回归系数。可用OLS法估计 :
金融计量学
当 >0时,为正相关, <0为负相关。当 =0时,由上式知, = ,此时为一个没有自相关的随机变量。当 =1或 =-1时, 与 之间的相关性最强: =1表示完全一阶正相关; =-1表示完全一阶负相关。由此可见,自相关系数 是一阶线性自相关强度的一个度量,其绝对值大小决定自相关的强弱。
金融计量学
二、出现自相关后的后果
(1)最小二乘估计量仍然是线性的和无偏的,但却不是有效的。
(2)OLS估计量的方差是有偏的。
因此,在随机项存在自相关的情况下,t检验失效,同样对F检验也有类似的结果。
金融计量学
第七节 自相关的检验与修正
一、自相关的检验方法
检验自相关的方法也可以分为两种:一种是图示法,另一种是解析法。
(一)图示法
由于回归残差 可以作为随机项 的估计量, 的性质可以从 的性质中反映出来。我们可以通过观察残差是否存在自相关来判断随机项是否存在自相关。
金融计量学
1.按时间顺序绘制残差图
图3-9 利率残差
金融计量学
2.绘制 , 散点图
图3-10 利率残差 、 散点图
金融计量学
(二)解析法
通过图示法我们只能粗略的判断是否存在自相关,如果要精确地探测序列相关性,需要使用解析法。解析法是通过假设检验来探测序列相关性的,下面我们将介绍其中的几种方法。
金融计量学
-W(Durbin-Watson)检验
D-W检验的基本思想:
对一阶自相关 :
当 =0时, 不具有一阶自相关,当 时,具有一阶自相关。
D-W检验构造的统计量 :
d
金融计量学
上式可表示为:
金融计量学
图3-11 Durbin-Watson d 统计量
Durbin-Watson证明了d的实际分布介于两个极限分布之间。一个是下极限分布,其下临界值为 ,上临界值为4- ;另一个是上极限分布,其下临界值为 ,上临界值为4- 。
金融计量学
D-W检验的步骤:
(1)建立假设 :
(2)进行OLS回归并获得残差;
(3)计算d值,大多数计算软件已能够实现。比如:Eviews软件就直接可以获得;
(4)给定样本容量及解释变量的个数,从D—W表中查到临界值 和 ;
(5)将d的现实值与临界值进行比较:具体的比较过程可参见上图所示。
金融计量学
D-W检验的局限性
(1)D-W检验不适合用于自回归模型。
(2)D-W检验只适用于一阶线性自相关 。
(3)d统计量无法用来判定那些通过原点的回归模型的自相关问题。
(4)利用D-W检验检验自相关时,一般要求样本容量至少为15,否则很难对自相关的存在性做明确的结论。
金融计量学
2、杜宾-h(Durbin-h)统计量
经济学的研究过程中,遇上解释变量中包含有因变量的滞后值的情况很多,为克服这样的困境,杜宾提出了一个基于h统计量的渐近检验:
在没有自相关的原假设之下,统计量是渐近正态的,其均值为0,方差为1。当检验一阶自回归的误差时,即使X包含有多个因变量的滞后值,统计量检验仍然有效。
金融计量学
-Godfrey 检验
当序列可能存在高阶自相关,或者我们需要同时检验残差与它的若干滞后项之间是否存在相关性,此时我们可以用Breusch-Godfrey检验(简记BG检验法)。BG检验法假定误差项是由如下的阶自回归过程产生的:
建立的零假设是: =0
金融计量学
BG检验法的步骤
(1)用最小二乘法估计回归模型并得到残差
(2)将 对第一步中的所有解释变量及 的r个滞后值( )进行回归,并取得 值。由于我们取了 的r阶滞后值,所以在这次回归中我们只有 个观测值(其中T为原方程观测值个数)。
(3)BG检验建立的检验统计量是 ,在大样本的条件下,它服从自由度为p的 分布,即 。若 大于临界值,则拒绝不存在自相关的零假设,反之则不能拒绝。
金融计量学
二、自相关的修正方法
(一)已知的情况下——广义差分法:
一般在实践中,往往假定残差项存在一阶自回归方式,即:
若自相关系数 已知,自相关问题就解决。
回到前例,经过DW检验发现随机项具有正的自相关现象,并且d=。因此,直接用OLS估计就不适合了,必须先消除自相关的影响:
已知 ,则
金融计量学
我们的回归模型是:
假设随机项u具有一阶线性自相关的形式: , 满足经典回归的全部假定。
将上式滞后一期并乘以 = 得到:
金融计量学
上二式相减,得到:
令
称为广义差分变换.
金融计量学
故
满足经典回归的全部假定,变换后的模型(上式)称为广义差分模型,已经没有自相关。
以上过程就是将原回归模型进行广义差分变换得到广义差分模型,对广义差分模型应用普通最小二乘法估计,这种方法称为广义差分法。
金融计量学
(二) 未知的情况下——杜宾两步法
杜宾两步法的主要步骤如下:
第一步:对模型
进行变换得到:
金融计量学
对上式用OLS进行估计,得到:
得到的 的系数就是自相关系数 的估计值 :
金融计量学
第二步:用 对原始数据进行差分变换:
得到:
金融计量学
对上式进行OLS估计,得到:
() () ()
d=
=