品管七大手法
研习班
讲 授 内 容:
第一章 數據與圖表
第二章 查檢表
第三章 层别法
第四章 柏拉图法
第五章 特性要因图法
第六章 散布图
第七章 直方图
第八章 管制图
原 因 现 象
例一:有人经过塑胶部摔倒,主管
立即感到现场,发现地上有油请这
属于什么?
例二:部门主管向你反应,近期工
作忙?希望能够增加人手,请问你
会如何回答?
为什么有
人会摔倒
?
第一章 數據與圖表
一.何謂數據?
就是根據測量所得到的數值和資
料等事實.因此形成數據最重要的基
本觀念就是:數據=事實
二.運用數據應注意的重點:
1.收集正確的數據
2.避免主觀的判斷
3.要把握事實真相
三.數據的種類
A.定量數據:長度.時間.重量等測量所得數據,也
稱計量值;(特點連續不間斷)以缺點數,不良品數來作
為計算標準的數值稱為計數值.(特點離散性數據)
B.定性數據:以人的感覺判斷出來的數據,例如:水
果的甜度或衣服的美感.
四.整理數據應注意的事項
1.問題發生要採取對策之前,一定要有數據作為依
據.
2.要清楚使用的目的.
3.數據的整理,改善前與改善后所具備條件要一致
.
4.數據收集完成之后,一定要馬上使用.
第二章 查檢表
一.何謂查檢表?
為了便於收集數据,使用簡
單記號填記并予統計整理,以作
進一步分析或作為核對、檢查之
用而設計的一種表格或圖表。
(用來檢查有關項目的表格)
二.查檢表的種類
查檢表以工作的種類或目的
可分為記錄用查檢表、種點檢用
查檢表兩種。
三、分類: 記錄用、點檢用
(1) 記錄用(或改善用)查檢表
主要功用在於根據收集之數據以調查不良項目、
不良原因、工程 分佈、缺點位置等情形.
其中有: (a)原因別、機械別、人員別、缺點別、
不良項目別
(b)位置別
(2) 點檢用查檢表主要功用是為要確認作業實施、
機械整備的實施情形,或為預防發生不良事故、
確保安全時使用
如:機械定期保養點檢表、登山裝備點檢表、不
安全處所點檢表
四、 查檢表的作法
(1) 明確目的---將來要能提出改善對策數據,因
之 必需把握現狀解析,與使用目的相配合
(2) 解決查檢項目---從特性要因圖圈選的4~6項
決定之
(3) 決定抽檢方式---全檢、抽檢
(4) 決定查檢方式---查檢基準、查檢數量、查檢
時間與期間、查檢對象之決定、並決定收集者、
記錄符號
(5) 設計表格實施查檢
五.查檢表的使用
數據收集完成應馬上使用,首先觀察整體
數據是否代表某些事實?數據是否集中在
某些項目或各項目之間有否差異?是否因
時間的經過而產生變化?另外也要特別注
意週期性變化的特殊情況.
查檢表 統計完成即可利用QC七大手法
中的柏拉圖加工整理,以便掌握問題的重
心.
查檢表
操作者 不良種類 月 日 月 日
A
尺寸
缺點
材料
其他
B
尺寸
缺點
材料
其他
第三章 層別法
一.何謂層別法?
層別法就是針對部門別.人別.工作方法別.
設備.地點等所收集的數據,按照它們共同的
特徵加以分類.統計的一種分析方法.也就是
為了區別各種不同原因對結果的影響,而以個
別原因為主,分別統計分析的一種方法.
二、層別的對象與項目
時間的層別
小時別、日期別、週別、月別、季節別…..等.
例 : 製程中溫度的管理就常以每小時來層別.
作業員的層別班別、操作法別、熟練度別、年齡別、 性別、
教育程度別…..等.
例 : A班及B班的完成品品質層別.
機械、設備的層別場所別、機型別 、年代別 、工具別 、
編號別、速度別…..等.
例 : 不同機型生產相同產品以機型別來分析其不良率.
作業條件的層別
溫度別、 濕度別、壓力別 、天氣別 、 作業時間別、作
業方法別 、測定器別…..等.
例 : 對溫度敏感的作業現場所應記錄其溫濕度,以便溫濕
度變化時能層別比較.
二、層別的對象與項目
原材料的層別
供應者別、 群體批別、製造廠別 、產地別 、
材質別、大小类別、貯藏期間別、成分別….. 等.
例 : 同一廠商供應的原材料也應做好批號別,領
用時均能加以層別,以便了解各批原料的品質, 甚至不良
發生時更能迅速採取應急措施,使損失達最小的程度.
測定的層別
測定器別、測定者別、測定方法別…..等.
檢查的層別
檢查員別、檢查場所別、檢查方法…..等.
其他
良品與不良品別、包裝別、搬運方法別…..等.
三.層別法的使用
活用層別法時必須記住三個重點:
1.在收集數據之前就應使用層別法
在解決日常問題時,經常會發現對於收集來的
數據必須浪費相當多的精神來分類,並作再一次
的統計工作.在得到不適合的數據,如此又得重新
收集,費時又費力.所以在收集數據之前應該考慮
數據的條件背景以后,先把它層別化,再開始收集
數據.(在做查檢時,考慮適當分類)
手法的運用應該特別注意層別法的使
用.
QC七大手法中的柏拉圖.查檢表.散佈
圖.直方圖和管制圖都必須以發現的問題
或原因來作層別法.
例如製作柏拉圖時,如果設定太多項目
或設定項目中其他欄所估的比例過高,就
不知道問題的重心,這就是層別不良的原
因.別外直方圖的雙峰型或高原型都有層
別的問題.
三.管理工作上也應該活用層別法
這是一張營業計劃與實際比較圖,可以知道營業
成績來達成目標,如果在管理工作上就用層別法的概
念先作分類的工作,以商品別作業績比較表,可查出那
種商品出了問題.如再以營業單位別銷售落后業績產
品的層別化再比較即可發現各單位對這種產品的銷售
狀況.如對業績不理想的單位,以營業人員別化即可發
現各營業人員的狀況,如此問題將更加以明確化.
以上的說明中可以發現管理者為了探究問題的真
正原因,分別使用了商品別,單位別.人別等層別手法,
使得間題更清楚,這就是層別法的觀點.
二.柏拉圖的製作方法
1.決定不良的分類項目
2.決定數據收集期間,並且按照分類項目
收集數據.
3.記入圖表紙並且依數據大小排列書出柱
形.
4.點上累計值並用線連結.
5.記入柏拉圖的主題及相關資料.
三.柏拉圖的使用
1.掌握問題點
2.發現原因
3.效果確認
四.製作對策前.對策后的效果確認時應注意以
下三項
1.柏拉圖收集數據的期間和對象必須一樣
2.對季節性的變化應列入考慮
3.對於對策以外的要因也必須加以注意,避免
在解決主要原因時影響了其他要因的突然增加
第五章 特性要因圖
一.何謂特性要因圖?
一個問題的特性受到一些要因的影響時,
我們將這些要因加以整理,成為有相互關系
而且有條理的圖形,這個圖形稱為特性要因
圖.由於形狀就像魚的骨頭,所以又叫做魚
骨圖.
二.用發散整理法製作特性要因圖
1.決定問題或品質的特征
2.盡可能找出所有可能會影響結果的因素
3.找出各種原因之的關系,在魚骨圖中用箭頭聯接
4.根據對結果影響的重要程度,標出重要因素
5.在魚骨圖中標出必要信息
此方法包括兩項活動:一找原因;二系統整理出這
些原因
注意事項:
1.嚴禁批評他人的構想和意見.
2.意見愈多愈好.
3.歡迎自由奔放的構想.
4.順著他人的創意或意見發展自已的創意.
三.用邏輯推理法製作特性要因圖
1.確定品質的特征
2.將品質特性寫在紙的右側,從左至右畫一箭頭
(主骨),將結果用方框框上.
3.列出影響大骨(主要原因)的原因,也就是第二
層次原因作為中骨,接著列出第三層次原因
4.根據對結果影響的重要程度,標出重要因素
5.在魚骨圖中標出必要信息
注意事項:
利用5個為什麼進行追踪原因
三.特性要因圖的使用
1.問題的整理
2.追查真正的原因
3.尋找對策
4.教育訓練
四.繪製特性要因圖應該注意的事項:
1.繪製特性要因圖要把握腦力激激盪法的原則,
讓所有的成員表達心聲
2.列出的要因應給予層別化
3.繪製特性要因圖時,重點應放在為什麼會有這
樣的原因,並且依照5W1H的方法
WHY: 為什麼必要;
WHAT:目的何在;
WHERE:在何處做;
WHEN:何時做;
WHO:誰來做;
HOW:如何做.
所
謂
5 1 就
是
W
H
特性要因圖的思考原則
一、腦力激蕩法
四原則: 1.自由奔放 2.意見越多越好
3.嚴禁批評他人 4.搭便車
二、5W1H法(WHAT WHERE WHEN WHO WHY
HOW)
三、5M法(MAN、MACHINE、MATERIAL、METHOD、
MEASUREMENT)
四、系統圖法
特性要因圖畫法
一、決定問題的特性
二、畫一粗箭頭,表示制程
為什麼
飯菜不
好吃
?
特性要因圖之畫法
三、原因分類成几個大類,且以 圈起來---中骨
四、加上箭頭的大分枝,約60°插到母線--子枝
材料
方法 鍋子
人
為
什
麼
飯
菜
不
好
吃
?
特性要因圖之畫法
五、尋求中、小原因,并圈出重點
時間
材料人
方法 鍋子
為
什
麼
飯
不
好
吃
?
不熟練
為為
何何
交交
貨貨
延延
遲遲
製造製造 人人 金額金額
物品物品 交貨交貨
沒有生產沒有生產
計劃配合計劃配合
沒有式樣生沒有式樣生
產條件不好產條件不好
訂貨情報掌訂貨情報掌
握不確實握不確實
沒有交貨意識沒有交貨意識
利潤低利潤低
運送成本高運送成本高
庫存安全量低庫存安全量低
方法不明確方法不明確
存放位置不足存放位置不足
單方面的決定單方面的決定
交貨期短交貨期短
數量少數量少,,沒有交沒有交
貨計劃貨計劃
找找 原原 因因
特性要因圖
第六章 散佈圖
一.何謂散佈圖?
就是反互相有關連的對應數據,在方格紙上
以縱軸表示結果,以橫軸表示原因;然后用點表
示出分佈形態,根據分佈的形態來判斷對應數據
之間的相互關係.
這里講的數據是成雙的,一般來說成對數據
有三種不同的對應關係.
1.原因與結果數據關係.
2.結查與結果數據關係.
3.原因與原因數據關係.
二.散佈圖製作的四個步驟:
1.收集相對應數據,至少三十組上,並且整
理寫到數據表上.
2.找出數據之中的最大值和最小值.
3.書出縱軸與橫軸刻度,計算組距.
4.將各組對應數據標示在座標上.
散佈圖的研判一來般來說有六種形態散佈圖的研判一來般來說有六種形態..
.在圖中當在圖中當XX增加增加,Y,Y也增加也增加,,也就是表示也就是表示
原因與結果有相對的正相關原因與結果有相對的正相關,,如下圖所如下圖所
示示::
散佈圖的研判散佈圖的研判
X
Y
0
.散散佈圖點佈圖點的分的分佈較廣佈較廣但是有向上的但是有向上的傾傾向向,,這這
個時個時候候XX增加增加,,一般一般YY也也會會曾加曾加,,但非相但非相對對性性,,
也就是就也就是就XX除了受除了受YY的因素影的因素影響響外外,,可能可能還還有其有其
他因素影他因素影響響著著X,X,有必要有必要進進行其他要因再行其他要因再調調查查,,
這種這種形形態態叫做似有正相叫做似有正相關稱關稱為為弱正相弱正相關關
X
Y
0
.當當XX增加增加,Y,Y反而反而減減少少,,而且形而且形態態呈呈現現一一
直直線發線發展的展的現現象象,,這這叫做完全叫做完全負負相相關關..如如
下下圖圖所示所示::
Y
0
X
.當當XX增加增加,Y,Y減減少的幅度不是很明少的幅度不是很明顯顯,,這時這時的的X X
除了受除了受YY的影的影響響外外,,尚有其他因素影尚有其他因素影響響X,X,這種這種形形態態
叫作非叫作非顯顯著性著性負負相相關關,,如下如下圖圖所示所示::
Y
0
X
.如果散如果散佈點佈點的分的分佈佈呈呈現雜亂現雜亂,,沒沒有任何有任何傾傾
向向時時,,稱稱為為無無相相關關,,也就是也就是說說XX與與YY之之間沒間沒有任有任
何的何的關係關係,,這時應這時應再一次先再一次先將數據層別將數據層別化之后化之后
再分析再分析,,如下如下圖圖所示所示::
Y
0
X
.假假設設XX增大增大,Y,Y也也隨隨之增大之增大,,但是但是XX增大到某一增大到某一
值之后值之后,Y,Y反而反而開開始始減減少少,,因此因此產產生散生散佈圖點佈圖點的分的分
佈佈有曲有曲線傾線傾向的形向的形態態,,稱稱為為曲曲線線相相關關,,如下如下圖圖所所
示示::
Y
0
X
第七章第七章 直方圖直方圖
一一..何何謂謂直方直方圖圖??
直方直方圖圖就是就是將將所收集的所收集的數據數據..特性特性質質或或結結
果值果值,,用一定的用一定的範圍範圍在在橫軸橫軸上加以上加以區區分成分成幾個幾個
相等的相等的區間區間,,將將各各區間內區間內的的測測定值所出定值所出現現的次的次
數數累累積積起起來來的面的面積積用柱形用柱形書書出的出的圖圖形形..
二二..直方直方圖圖的的製製作步作步驟驟::
1. 1.收集收集數據並數據並且且記錄記錄在在紙紙上上..
2. 2.找出找出數據數據中的最大值中的最大值與與最小值最小值..
3. 3.計計算全距算全距..
4. 4.決決定定組數與組組數與組距距..
5. 5.決決定各定各組組的上的上組組界界與與下下組組界界..
6. 6.決決定定組組的中心的中心點點..
7. 7.製製作次作次數數分配表分配表..
8. 8.製製作直方作直方圖圖..
三三..直方直方圖圖名名詞詞解解釋釋
.求全距求全距::在所有在所有數據數據中的最大值中的最大值與與最小最小
值的差值的差
.決決定定組數組數
組數過組數過少少,,雖雖可得到相可得到相當簡單當簡單的表格的表格,,
但但卻卻失去次失去次數數分配的本分配的本質質;;組數過過組數過過多多,,
雖雖然表列然表列詳盡詳盡,,但但無無法法達達到到簡簡化的目的化的目的..
((異異常值常值應應先除去再分先除去再分組組).).
分分組組不宜不宜過過多多,,也不宜也不宜過過少少,,一般用一般用數學數學家史家史
特吉斯提出的公式特吉斯提出的公式計計算算組數組數,,其公式如下其公式如下::
K=1+ LgK=1+ Lgnn
一般一般對數據對數據之分之分組組可可參參考下表考下表::
數據數 組數
50~100 6~10
100~250 7~12
250個以上 10~20
.組組距距
組組距距==全距全距//組數組數
組組距一股取距一股取5,105,10或或22的倍的倍數數
4.決定各組之上下組界
最小一最小一組組的下的下組組界界==最小值最小值--測測定值之最小位定值之最小位數數/2,/2,測測定定
值的最小位值的最小位數確數確定方法定方法::如如數據數據為為整整數數,,取取1;1;如如數據數據為為
小小數數,,取小取小數數所精所精確確到的最后一位到的最后一位
(;;……)(;;……)
最小一最小一組組的上的上組組界界==下下組組界界++組組距距
第二第二組組的下的下組組界界==最小一最小一組組的上的上組組界界
其余以此其余以此類類推推
.計計算各算各組組的的組組中中點點
各各組組的的組組中中點點==下下組組距距++組組距距/2/2
6.作次數分配表
將所有數據依其數值大小劃記號於各組之組
界,內並計算出其次數
7.以橫軸表示各組的組中點,從軸表示次數,繪出直
方圖
實例實例11
某電纜廠有兩臺生產設備某電纜廠有兩臺生產設備,,最近最近,,經經
常有不符合規格值常有不符合規格值(135~210g)(135~210g)異常異常
產品發生產品發生,,今就今就A,BA,B兩臺設備分別測兩臺設備分別測
定定5050批產品批產品,,請解析並回答下列回請解析並回答下列回
題題::
1. 1.作全距數據的直方圖作全距數據的直方圖..
2. 2.作作A,BA,B兩臺設備之層別圖兩臺設備之層別圖
3. 3.敘述由直方圖所得的情報敘述由直方圖所得的情報
收集數據如下收集數據如下::
A設備 B設備
20 179 168 165 183 156 148 165 152 161
168 188 184 170 172 167 150 150 136 123
169 182 177 186 150 161 162 170 139 162
179 160 185 180 163 132 119 157 157 163
187 169 194 178 176 157 158 165 164 173
173 177 167 166 179 150 166 144 157 162
176 183 163 175 161 172 170 137 169 153
167 174 172 184 188 177 155 160 152 156
154 173 171 162 167 160 151 163 158 146
165 169 176 155 170 153 142 169 148 155
解:1.全體數據之最大值為194,最小值為119
根據經驗值取組數為10
組距=(194-119)/10= 取8
最小一組的下組界=最小值-測定值之最
小位數/2
=119-1/2=
最小一組的上組界=下組界+組距
=+8=
作次數分配表作次數分配表
序號 組界 組中點
全體 A設備 B設備
次數 次數 次數
1 ~ 2 2
2 ~ 1 1
3 ~ 4 4
4 ~ 8 1 7
5 ~ 17 2 15
6 ~ 21 8 13
7 ~ 23 16 7
8 ~ 14 13 1
9 ~ 9 9
10 ~ 1 1
合計 100 50 50
.全體數據之直方圖全體數據之直方圖
SL=135 SU=210
.作作AA設備之層別直方圖設備之層別直方圖
SL=135
SU=210
設備之層別圖設備之層別圖
SU=210SL=135
項
目
全體 A設備 B設備
形
狀
稍偏左 正常 稍偏左
分佈中心與規格中心
值相比較,稍為偏左
,若變動大,則有超出
規格下限
全部在規格
界限內,沒有
不良品出現
分佈 中習與
規格中心值
相比較,稍為
偏左,若變動
大,則有超出
規格下限的
可能
B設備可能發生超出規格下限的可能,因此,有必要加
以改善,使數據平均值右移到規格中心.
A設備若能使CP值再小,則將更好.
.結論結論
直方圖例直方圖例
NO 組界 組中心點 次數
1 ~126 3
2 126~ 11
3 ~139 10
4 139~ 30
5 ~152 21
6 152~ 11
7 ~165 11
8 165~ 3
下限下限SL130SL130 上限上限SL180SL180
四四..如何依如何依據圖據圖案的分案的分佈狀態佈狀態判判斷斷
.如如圖圖中中顯顯示中示中間間高高,,兩邊兩邊低低,,有集中的有集中的趨勢趨勢,,表表
示示規規格格..重量等重量等計計量值的相量值的相關關特性都特性都處處於安全於安全
的的狀態狀態之下之下,,製製品工程品工程狀況狀況良好良好..如下如下圖圖所示所示::
.如如圖圖中中顯顯示示缺缺齒齒形形圖圖案案,,圖圖形的柱形高低不一呈形的柱形高低不一呈現現缺缺
齒狀態齒狀態,,這種這種情形一般就情形一般就來來大都是大都是製製作直方作直方圖圖的方法的方法
或或數據數據收集收集((測測量量))方法不正方法不正確確所所產產生生..如下如下圖圖所示所示::
.如如圖圖所示所示為為絕絕壁形壁形,,另外一另外一邊邊拖著尾巴拖著尾巴,,這種這種偏偏態態型型
在理在理論論上是上是規規格值格值無無法取得某一法取得某一數數值以下所值以下所產產生之故生之故,,
在品在品質質特性上特性上並沒並沒有有問題問題,,但是但是應檢討應檢討尾巴拖尾巴拖長長在技在技
術術上是否可接受上是否可接受;;例治工具的例治工具的鬆動鬆動或磨或磨損損也也會會出出現現拖拖
尾巴的情形尾巴的情形..如下如下圖圖所示所示::
4.雙峰型
有兩種分配相混合,例如兩臺機器或兩種不同原料
間有差異時,會出現此種情形,因測定值受不同
的原因影響,應予層別后再作直方圖.
5.離散型
測定有錯誤,工程調節錯吳或使用不同原
材所引起,一定有異常原存在,只要去除,即可
制造出合規格的制品
6.高原型
不同平均值的分配混合在一起,應層別之后再作直方圖
五.與規格值或標準值作比較
1.符合規格
A.理想型:制品良好,能力足夠.制程能力在規格界
限內,且平均值與規格中心一致,平均值加減4倍
標準差為規格界限,制程稍有變大或變小都不會
超過規格值是一種最理想的直方圖.
B.一則無餘裕:制品偏向一邊,而另一邊有
餘裕很多,若製程再變大(或變小),很可
能會有不良發生,必須設法使製程中心值
與規格中心值吻合才好.
C.兩側無餘裕:制品的最小值均在規格內,但都在規
格上下兩端內,且其中心值與規格中心值吻合,雖
沒有不良發生,但若製程稍有變動,說會有不良品
發生之危險,要設法提高製程的精度才好.
2.不符合規格
A.平均值偏左(或偏右)
如果平均值偏向規格下限並伸展至規格下限左
邊,或偏向規格上限伸展到規格上限的右邊,但製
程呈常態分配,此即表示平均位置的偏差,應對固
定的設備,機器,原因等方向去追查. 上限
下限
B.分散度過大:實際製程的最大值與最小值均超過規
格值,有不良品發生(斜線規格),表示標準差太大,
制程能力不足,應針對人員,方法等方向去追查,要
設法使產品的變異縮小,,或是規格訂的太嚴,應放
寬規格.
下限 上限
C.表示製程之生產完全沒有依照規格去考慮,或規
格訂得不合理,根本無法達到規格.
下限下限 上限上限
六六..直方直方圖圖在在應應用上必用上必須須注意事注意事項項
.直方直方圖圖可根可根據據由形由形圖圖按分按分佈佈形形狀來狀來
觀觀察察製製程是否正常程是否正常..
.產產品品規規格分格分佈圖佈圖案可案可與標準規與標準規格作格作
比比較較,,有多大的差有多大的差異異..
.是否必要再是否必要再進進一步一步層別層別化化..
第八章 管制圖
從從每日生每日生產產的的產產品品線線中所中所測測得的得的
零零亂數據亂數據中中,,找出找出經經常常發發生和偶然生和偶然發發生生
事故的事故的數據數據,,以便以便幫幫助找出助找出問題問題原因原因,,
這這就是非依靠管制就是非依靠管制圖圖不可不可..
管制管制圖圖分分為為兩兩大大類類,,本文每一本文每一類類舉舉
一例一例進進行行講講解解
一.計量值管制圖
作為管制制程的計量值管制圖,一方面以平均數管制
圖管制平均數的變化,以全距管制其變異的情形.本節
將介紹平均數與全距管制圖,將就管制圖在制程中的
每一步詳加描述.
計量值管制圖的種類如下:
數據 名稱 管制圖
計量值
平均數與全距管制圖 X—R管制圖
平均數與標準差管制圖 X —S管制圖
個別值管制圖 X管制圖
實例:平均數與全距管制圖
某某廠廠制造全制造全銅銅棒棒,,為為控制其品控制其品質質,,選選定定內徑內徑為為管制管制項項目目,,並決並決定以定以X-RX-R
管制管制圖來圖來管制管制該該制程的制程的內徑內徑量度量度,,並並於每小於每小時隨機時隨機抽取抽取55個樣個樣本本測測定定,,
共收集最近共收集最近製製程之程之數據數據125125個個,,將將其其數據數據依依測測定定順順序及生序及生產產時間時間排列排列
成成2525組組,,每每組樣組樣本本55個個,,每每組樣數組樣數55個個,,記錄數據記錄數據如下如下::
樣本組 X1 X2 X3 X4 X5
1 40 40 38 43 41
2 40 42 39 39 39
3 42 39 41 43 40
4 40 40 39 42 41
5 42 39 42 43 40
6 43 41 41 40 41
7 43 38 37 42 41
8 37 43 43 35 40
9 40 39 42 41 44
樣本組 X1 X2 X3 X4 X5
10 39 41 41 36 38
11 40 44 42 40 39
12 43 38 39 41 42
13 38 40 36 39 41
14 36 35 39 38 39
15 40 39 40 39 48
16 42 46 46 47 47
17 36 40 43 41 43
18 37 39 40 38 42
19 40 37 39 39 43
20 47 40 39 36 40
21 40 37 40 43 42
樣本組 X1 X2 X3 X4 X5
22 39 39 39 40 45
23 31 33 35 39 35
24 40 40 40 41 42
25 46 44 41 41 39
樣本組 1 2 3 4 5 6 7 8
各組平均
數
41 41.
2
41.
2
41.
2
39.
6
全距 5 3 4 3 4 2 6 8
樣本組 10 11 12 13 14 15 16 17
各組平均
數
39 41 37.
4
41.
2
45.
6
40.
6
全距 5 5 5 5 4 9 5 7
樣本組 18 19 20 21 22 23 24 25
各組平均
數
39.
6
40.
4
40.
4
34.
6
40.
6
42.
2
全距 5 6 11 6 6 8 2 7
計計算如下算如下::
X= X=
R==5.查系查系數數表表,,當當N=5N=5
時時,D,D44=,D=,D33=0=0
X管制圖上下限:
CL= =
UCL= + =
LCL= - =
R管制圖上下限:
CL= =
UCL= =
LCL= =0
UCL==
CL==
LCL==
R管制圖
UCL==
CL==
LCL=0LCL=0
分析結論
在管制圖中有第16個及第23個樣本組的點
分別超出管制上限及管制下限,表示制程
平均發生變化,而R管制圖並無點超出界
限或在界限上,表示制程變異並未增大.
二.計數值管制圖
1.何謂計數值?
商品制造的品質評定標準有計量型態,例如:
直徑,容量;然而有些品質特性定義為「良品或不良
品」將更合理.所謂計數值就是可以計數的數據,如
不良品數,缺點數等.
2.計數值管制圖的類型
數據 名稱 管制圖
計數值
不良率管制圖 P管制圖
不良個數管制圖 PN管制圖
缺點數管制圖 C管制圖
單位缺點數管制圖 U管制圖
P管制圖實例
運用條件:
1.產品不是良品就是不良品
2.抽樣放回
3.彼此獨立進行
樣品不良率計算公式為:
P=
標準差公式為:
S=
上下限計算公式如下:
管制上限(ucl): = +3 ( 為平均不良率,n為樣
本數)
中心線(cl) :
管制下限(lcl) = -3
如果下限計算結果可能為負數,因為二項分配並不
對稱,且其下限為零,故當管制下限出現小于零的
情況,應取0表示.平均不良率應用加權平均數來計
算(用不良數總數與全體的樣本總數之比).
例: 寶光廠生產的MOUSE用的包裝袋,檢驗
其底部是否有破損即包裝為不良品,取30個
樣本,每個樣本數為50個,這些樣本是在機
器每天三班制的連續工作每半小時取一次
而得.
樣本數 不良數 樣本數 不良數 樣本數 不良數
1 8 11 5 21 10
2 16 12 24 22 18
3 9 13 12 23 15
4 14 14 7 24 15
5 10 15 13 25 26
6 12 16 9 26 17
7 15 17 6 27 12
8 8 18 5 28 6
9 10 19 13 29 8
10 5 20 11 30 10
計算結果如下:
平均不良率P= =(CL)
用P當真實過程不合格的估計值,可以計算管制上
限和下限,如下:
UCL=P+3 =
LCL=P- 3 =
P管制圖如下:
UCL==
UCL==
UCL==
針對管制圖進行分析
由管制圖中我們可以發現來自樣本12及25的
兩點超出管制上限,故制程是在非管制狀態,必須進
一步探討是否有異常原因.分析樣本12得知,在這
半小時里,有一批新進的包裝袋被使用,所以這異常
的現象是由于新原料加入引起.而在樣本25那半小
時,有一個沒有經驗的員工在操作此機器,而使樣本
25有這麼高的不良率.
現在將超出管制界限的兩個點刪除掉,重新計
算管制界限,管制以后的制程,其管制中心線及上.
下限為
不是
管制圖的選擇
數據性質
計量值 計數值
樣本大小
N=?
數据係不良數
或缺點數
N=1N≧2
CL性質?
N=?
管
制
圖
X
_
X~
N=2~5 N≧10
缺點數不良數
N是否相等?
是 不是
單位大小
是否相同?
是
X
~
R
管
制
圖
RX
管
制
圖
~
管
制
圖
~
管
制
圖
n
C
管
制
圖
X X Rm p
管
制
圖
pn
管
制
圖
σ
三.管制圖的判別
管制狀態,意指制程安定,管制狀態也稱安定狀態.我們
無法知道制程的真正狀態,只能對制程的某種特性值收
集數據,將其繪在管制圖上,由管制圖來觀察制程的狀
態.在判定制程是否處于管制狀態,可利用以下基準:
1. 管制圖的點沒有逸出界外.
2. 點的排列方法沒有習性,呈隨機現象.
在正常管制的狀態下,管制圖上的點子應是隨機分布,
在中心線的上下方約有同數的點,以中心線近旁為最多,
離中心線愈遠點愈少,且不可能顯示有規則性或系統性
的現象.
歸納得到下面兩種情形:
•1. 1. 管制管制圖圖上的上的點點,,大多大多數數集中在集中在
中心中心線線附近附近,,少少數數 出出現現在管在管
制界限附近制界限附近,,且且為為隨機隨機分布分布..
•2. 2. 一般管制一般管制圖圖上的上的點點,25,25點點中有中有
00點點;35;35點點中有中有11點點以下以下;100;100點點中中 有有22
點點以下以下,,超出管制界限外超出管制界限外時時,,可可稱稱為為安安
全管制全管制狀態狀態..
•以上以上兩點僅兩點僅是作是作為為一一個參個參考考,,各位同各位同
仁仁應應在在實際實際中中 靈靈活活運運用用..實際實際分析分析..
3點中有2點在A區
連續9點在C區或C區以外
連續6點遞增或遞減
14點上下交替
5點中有4點在B區
15點在C區中心線上下
8點在中心線兩側,但無一在C區
非隨機管制界限內的判定
利用點的排法判定是否處在管制狀態,可依據以下
法則:
1.點在中心線的一方連續出現.
2.點在中心線的一方出現很多時.
3.點接近管制界限出現時.
4.點持續上升或下降時.
5.點有周期性變動時.
連串
連續七點或八點在中心線與管制上限或中心
線與管制下限之間的型Ⅰ誤關差的機率是約
為(σ )8=,在如此小的機率竟會出現,
可想像有異常原因發生,在中心線的上方或下
方出現的點較多如下:
1.連續11點以上至少有10 點
2.連續14點以上至少有12 點
3. 連續17點以上至少有14 點
4. 連續20點以上至少有16點
點子出現在管制界限附近,三倍標準差與二
倍標準差間.
1.連續3點中有2點.
2.連續7點中有3點.
3.連續10點中有4點
管制圖中的點的趨勢傾向
連續6點以上一直上升或一直下降,趨
勢是以向某一個方向連續移動,而趨勢
傾向的發生有以下可能原因:
1.由于工具磨損或制程中某些成分劣化所造成.
2.人的因素造成,如工作者疲勞.
3.季節性因素造成,如氣溫變化.
管制圖中的點的趨勢傾向
連續6點以上一直上升或一直下降,趨勢是以向某
一個方向連續移動,而趨勢傾向的發生有以下可
能原因:
1.由于工具磨損或制程中某些成分劣化所造成.
2.人的因素造成,如工作者疲勞.
3.季節性因素造成,如氣溫變化.
周期性循環變化
管制圖上的點,呈現一個周期性循環變化時,應調
查下列不良原因:
1.機器開動或關閉,造成溫度或壓力的增減.
2.物料的品質受季節或供應商的影響.
3.由于周期性的預防保養,造成機器性能的周期
變化表現.
4.由于操作員疲勞及隨后的休息造成的周期性的
變化.
5.由于材料的機械及化學性質所造成的周期性.
過于集中型
點子大都集中在中心線附近倍標準差間,其型
Ⅰ誤差機率是,如果抽樣選擇不當,可能會造
成點子集中在中線附近,例如兩個不同操作員的
結是點在同一張圖上.像這種母體混合的情形相
當普遍.以下是一些造居這種情形的可能原因:
1.兩個或兩個以上的操作員點在同一張圖上.
2.兩台或兩台以上的機器點在同一張圖上.
3.兩家品質差異很大的供應商點在同一張圖上.
4.兩台或更多的量測設備間的差異.
兩條以上生產線制程方法上的差異.
管理不善者管理不善者
.人人員員教育教育,,訓練訓練不足不足,,
.原始原始設計設計有有錯誤錯誤或或圖圖上上標標示的示的問題問題等等..
.治具治具,,夾夾具具設計設計不不當當或使用不或使用不當當..
.不良材料混入制程不良材料混入制程..
.未推行未推行標準標準化活化活動動..
.測試儀測試儀器未加校正器未加校正與維護與維護..
.未落未落實實保保養養工作工作
上列上列諸項諸項原因常出在管理制度不善的工原因常出在管理制度不善的工廠廠,,在在 ––
RR管制管制圖圖呈呈現現大的大的變動變動,,如欲消除此如欲消除此類異類異常原因常原因,,
一定要先一定要先確確定管理制度定管理制度,,推行推行標準標準化工作化工作..
技術不足者
1. 機器設計上的問題.
2. 制程能力不足:材料,機械,作業方法與人員綜合結果
無法達到品質要求者.
3. 工作環境布置不當.
4. 測定儀器的測定方法不當.
5. 機械設備精度不足.
6. 缺乏技術人才.
此諸原因常明顯地表現于二種現象:管制界限很寬,產品
品質分散幅度較規格界限為寬.此諸異常原因由于制程
能力不足而起,非設法加強制程能力不可.否則制程零件
的互換性有問題,需經全數選別才能裝配,產品需經全數
檢查,才能符合規格要求.
其他因素者
1.異質材料的突然入侵.
2.日夜班精神上的困擾等.
3.工作人員的疏忽.
4.未按操作標準作業.
5.機械的自然磨損.
6.操作條件的突然變化.
7.計算的錯誤.
8.操作標準不完備.
9.不隨機抽樣法.
此諸原因常在管制圖上出現,如有系
統可尋,則利用分層方法加以分析;如
不規則出現,則易被發現,而予以消除.
七大手法口決
魚骨追原因
查檢集數据
柏拉抓重點
直方顯分布
散佈看相關
管制找異常
層別作解析